Tag Archives: chatbot

Our expectations of digital language learning partners

My current investigation into speech interfaces as language-learning partners is revealing that one of the main problems companies are facing when developing these tools is that they do not behave how they would like them to. This refers to the product often lacking the necessary layers of programming necessary to design a bot that can fully simulate human-human interaction.

This is does not come as a surprise to me because I firmly believe that until we reach a stage where we fully understand the human brain. I believe we are still quite far from reaching this stage, so I find the efforts to try and build an AI tool that can fully replicate the human brain and fully simulate human-human interaction akin to herding cats. To some extent it can be done, but not quite as we’d like or expect.

From my own experiences of building a conversational bot I appreciate the intricacies of the programming required to build a tool which acts as we would like. It is time consuming, arduous, and extremely challenging to say the least. This is why, I presume, that the English language learning landscape is not flooded with such tools.

I am currently examining learner reactions to spoken digital interface interaction by trying to understand how learners respond and what it is specifically that makes them respond in different ways. My hope is that by better understanding user discourse, it will provide some insights into the characteristics an effective chat interface requires.

Hello, can I help you?

Facebook messenger bots can be set up and working within an hour. It is no wonder then that text-to-text chatbots have replaced the automated customer service answer machines in many sectors of industry.

The chatbot can be programmed with a training corpus of customer service complaints in the form of recognisable input data, and possible solution phrases. The algorithms then use key word identification to identify the issue and match it with a suitable response. Given the many experiences of miscommunication with lackadaisical customer service telephone operators, I feel this is a perfect use of chatbot technology.

I have been experimenting with building a bespoke chatbot for my own research purposes, so I can confirm that the practice is comparatively complex compared to the theory of providing an interactional partner for learners of English as a second language. Using the model and frameworks of customer-service chatbots was not possible to modify in my case. I tried using the Dialogue Flow framework provided by Google, which surprisingly provided rather disappointing results.

I feel the fear of a digital world where machines take over from humans is somewhat premature, as there is still a lot of development needed in order to iron out the creases of chatbot technology.

Man or machine?

Man or machine? That is the question! There is an endless flow of information being pushed onto our screens about the danger of robots and machines taking over the world. Martin Ford’s Rise of the robots (2015) presents a blatantly bleak view of automation and the ‘threat of jobless future’ due to the advances of technology.

When it comes to automated customer service agents, I am sure we all have long winded stories of negative experiences. On the flip-side however, I have also had my share of less than favourable customer service experiences with humans. While there is evidence of the frustrations of not being able to interact with a human to resolve customer service issues, there is considerably more evidence which supports the view that the human was unable to resolve the query, and a chatbot could have more than adequately dealt with the matter in a considerably shorter time frame (Xu et al, 2017). Chatbots are also consistently patient and polite; remain unruffled by rude customers, high traffic, or repeated requests for the same information, and never tire (McNeal & Newyear, 2013).

I think there is a time and a place for everything. But given the inflated lack of patience and the abundance of immediacy that humans expect from the service sector nowadays, I think chatbots are a good option for quick enquiries and to resolve systematic ‘problems’.


So just how should you speak to a chatbot?

So just how should you speak to a chatbot? If you cast your mind back to Tay the chatbot built by Microsoft. She was shut down on the grounds of inappropriateness because she was posting offensive and unsuitable content on her Twitter account. Hardly surprising really considering she was built using corpus from Twitter posts and dialogues, a perfect example of the hunter becoming the hunted.  

The apparent ubiquity of chatbots in the customer service sector is proving to be somewhat beneficial to the companies using them, but less convenient for users. The majority of conversation agents are built using a retrieval-based model, which reply based on a repository of predefined responses from which the most appropriate is selected, based on the input text and context. The output could be limited to as little as three utterances per response. Let’s look at an opening turn to see how this works:

‘Hello, what can I do for you today?’

> No response, delayed response from user, or the chatbot is unable to interpret the user input.

‘I missed that, say that again?’

> No response, delayed response from user, or the chatbot is unable to interpret the user input.

‘Sorry, can you say that again?’

> No response, delayed response from user, or the chatbot is unable to interpret the user input.

‘Sorry, I can’t help.’.

This leads me to believe that we as users need to learn how to speak to an automated conversation agent before determining what we want from it. If we don’t respond, or respond using undecipherable discourse then we are expecting a machine to manage a task that humans would also face problems with interpreting. While considerable research and development is being carried out in the field of intelligent conversational agents, we are still a long way from them becoming an integral part of mainstream customer service interfaces that are able to interpret our utterances and commands to the best of our expectations.